Automorphism groups and adversarial vertex deletions

نویسنده

  • Derrick Stolee
چکیده

Any finite group can be encoded as the automorphism group of an unlabeled simple graph. Recently Hartke, Kolb, Nishikawa, and Stolee (2010) demonstrated a construction that allows any ordered pair of finite groups to be represented as the automorphism group of a graph and a vertexdeleted subgraph. In this note, we describe a generalized scenario as a game between a player and an adversary: an adversary provides a list of finite groups and a number of rounds. The player constructs a graph with automorphism group isomorphic to the first group. In the following rounds, the adversary selects a group and the player deletes a vertex such that the automorphism group of the corresponding vertex-deleted subgraph is isomorphic to the selected group. We provide a construction that allows the player to appropriately respond to any sequence of challenges from the adversary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted modules for vertex algebras associated with vertex algebroids

We continue with [LY] to construct and classify graded simple twisted modules for the N-graded vertex algebras constructed by Gorbounov, Malikov and Schechtman from vertex algebroids. Meanwhile we determine the full automorphism groups of those N-graded vertex algebras in terms of the automorphism groups of the corresponding vertex algebroids.

متن کامل

The automorphism groups of non-edge-transitive rose window graphs

In this paper, we will determine the full automorphism groups of rose window graphs that are not edge-transitive. As the full automorphism groups of edge-transitive rose window graphs have been determined, this will complete the problem of calculating the full automorphism group of rose window graphs. As a corollary, we determine which rose window graphs are vertex-transitive. Finally, we deter...

متن کامل

Cayley graphs and symmetric interconnection networks

These lecture notes are on automorphism groups of Cayley graphs and their applications to optimal fault-tolerance of some interconnection networks. We first give an introduction to automorphisms of graphs and an introduction to Cayley graphs. We then discuss automorphism groups of Cayley graphs. We prove that the vertex-connectivity of edge-transitive graphs is maximum possible. We investigate ...

متن کامل

The automorphism group of accessible groups

In this article, we study the outer automorphism group of a group G decomposed as a finite graph of group with finite edge groups and finitely generated vertex groups with at most one end. We show that Out(G) is essentially obtained by taking extensions of relative automorphism groups of vertex groups, groups of Dehn twists and groups of automorphisms of free products. We apply this description...

متن کامل

Quantum automorphism groups of vertex - transitive graphs of order ≤ 11

We study quantum automorphism groups of vertex-transitive graphs having less than 11 vertices. With one possible exception, these can be obtained from cyclic groups Zn , symmetric groups Sn and quantum symmetric groups Qn , by using various product operations. The exceptional case is that of the Petersen graph, and we present some questions about it.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2014